# Next generation hydrogen production process can realize Hydrogen Energy Society

Osamu Okada President Renaissance Energy Research Corporation Visiting Professor Tohoku University

#### Improved Three Way Catalyst for Automobile (Based on the results of NEDO PJ(2011) & METI PJ(2012))



Fig. Conversion curves of  $C_3H_6$ , CO and  $NO_x$  over the novel catalysts.

Standard catalyst 1%Rh/CeO<sub>2</sub> : Pd/Al<sub>2</sub>O<sub>3</sub> = 1 : 2 Novel catalyst Rh/Improved ceria : Pd/Novel heat resistance Al<sub>2</sub>O<sub>3</sub> = 1 : 4 Ceria (-40%), Pd (-30%) and Rh (-40%)

Significant reduction both ceria and noble metal was achieved using combination of Heat resistant γ- alumina and high performance ceria

#### We succeeded in development of new catalyst support which maintain a large surface area in the automotive exhaust gas conditions..



Stability of newly developed heat resistant  $\gamma$  – AI<sub>2</sub>O<sub>3</sub> was significantly improved compared to the existing  $\gamma$  –AI<sub>2</sub>O<sub>3</sub>.

#### Effect of improved ceria



TWC result of Improved ceria (2011ver.) (reference catalyst composition)

> Ceria: Alumina = 1 : 2 1% Rh on Ceria 2.5% Pd on Alumina

Aged catalyst shows higher performance than the reference catalyst TWC result of Improved ceria (2012ver.) (reference catalyst composition)

> Ceria : Alumina = 1 : 2 1% Rh on Ceria 2.5% Pd on Alumina

Fresh, Aged catalysts show higher performance than the reference catalyst





## Effects of advanced technologies (Hydrogen station)



### **Downsizing of Hydrogen station (300Nm<sup>3</sup>/h)**





# Next generation hydrogen production process can realize Hydrogen Energy Society

## Innovative materials we developed

Heat-resistant γ -alumina
High Performance Ceria
can realize

Next generation hydrogen production process