Drag Reduction Mechanism of an Automobile with Inside-Fin Tires

Shigenori Hashida¹, Koji Shimoyama¹, Shigeru Obayashi¹, Masataka Koishi² and Yuji Kodama²
¹Institute of Fluid Science, Tohoku University, Japan
²Yokohama Rubber Co., Ltd., Japan

November 26, 2013

10th International Conference on Flow Dynamics OS5: Global / Local Innovation for Next Generation Automobile

Background

Aerodynamic Drag

- Accounts for 50 % of running resistance at 60 km/h
- Affected by the appearance

- **Fin Tires**
- Expected to reduce drag without sacrificing appearance
- Demonstrated to be effective for drag reduction in experiments and numerical simulations
- x Do not clarify its detailed mechanism yet

Objective

Clarify the drag reduction mechanism induced by fin tires through the large eddy simulations (LES) for

1. No-fin tire model

2. Fin tire model

Method

Flow solver	FrontFlow/red
Governing equation	Incompressible Navier-Stokes equations
Sub-grid scale model	Standard Smagorinsky (Constant: 0.15)
Pressure-velocity coupling	SMAC method
Time integration	Implicit Euler method
	Cell-vertex finite volume method
Spatial discretization	> Second-order central difference (95 %)
	> First-order upwind difference (5 %)

Model: Wind tunnel model (1/4 the size of a real car) Velocity: 20 m/s $Re= 2.1 \times 10^5$ (based on the tire diameter)

Results

- The fins enhance the interaction between the flow along the tire rotational direction and under-floor flow
- This interaction increases the pressure acting on the front part of the wheelhouse

Thank you for your attention.

If you have any questions, please come to my poster.